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Two point distributions
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Quantify evenness

For every point set XN = {x1, . . . ,xN} of distinct points, we
assign several qualitative measures that describe aspects of
even distribution.

Then we can try to minimise or maximise these measures for
given N .
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Combinatorial measures

discrepancy

DN (XN ) = sup
C

∣∣∣∣∣ 1

N

N∑
n=1

χC(xn)− σ(C)

∣∣∣∣∣

covering radius

δN (XN ) = sup
x∈Sd

min
k
|x− xk|

separation
∆N (XN ) = min

i6=j
|xi − xj |
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Analytic measures

error in numerical integration

IN (f,XN ) =

∣∣∣∣∣ 1

N

N∑
n=1

f(xn)−
∫
Sd

f(x) dσd(x)

∣∣∣∣∣

Worst-case error for integration in a normed space H:

wce(XN , H) = sup
f∈H
‖f‖=1

IN (f,XN )),
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L2-discrepancy and energy

L2-discrepancy:

∫ π

0

∫
Sd

∣∣∣∣∣ 1

N

N∑
n=1

χC(x,t)(xn)− σd(C(x, t))

∣∣∣∣∣
2

dσd(x) dt

(generalised) energy:

Eg(XN ) =
N∑

i,j=1
i 6=j

g(〈xi,xj〉) =
N∑

i,j=1
i 6=j

g̃(‖xi − xj‖),

where g denotes a positive definite function.

L2-discrepancy and the worst case error (for many function
spaces) turn out to be generalised energies of the underlying
point configuration.
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Hyperuniformity in Rd

Heuristic
Hyperuniformity = asymptotically uniform + extra order

Counting points in test sets, e.g. balls BR

NR :=

N∑
i=1

1BR
(Xi) , where (X1, . . . , XN ) ∼ ρ(N)

V

The expected number of points in BR is

E [NR]
th.→ ρ|BR|
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Hyperuniformity in Rd

The variance measures the rate of convergence.

Example: (Xi)i i.i.d. ⇒ V[NR]
th.→ ρ|BR|.

Definition

(ρ(N))N∈N hyperuniform⇐⇒ lim
th.

V[NR] ∼ |∂BR| for large R

Remarks:

If (ρ(N))N∈N hyperuniform, i.e. Rd-term of lim
th.

V [NR]

vanishes
⇒ Rd−1-term cannot vanish.
Hyperuniformity is a long-scale property.
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Hyperuniformity on the sphere

Definition (Hyperuniformity)

Let (XN )N∈N be a sequence of point sets on the sphere Sd.
The number variance of the sequence for caps of opening
angle φ is given by

V (XN , φ) = Vx# (XN ∩ C(x, φ)) . (1)

A sequence is called

hyperuniform for large caps if

V (XN , φ) = o (N) as N →∞ (2)

for all φ ∈ (0, π2 ) ;
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Hyperuniformity on the sphere (continued)

Definition (continued)

hyperuniform for small caps if

V (XN , φN ) = o (Nσ(C(·, φN ))) as N →∞ (3)

and all sequences (φN )N∈N such that

1 limN→∞ φN = 0
2 limN→∞Nσ(C(·, φN )) =∞.

hyperuniform for caps at threshold order, if

lim sup
N→∞

V (XN , tN
− 1

d ) = O(td−1) as t→∞. (4)
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How to get hyperuniform sequences?

jittered sampling

determinantal point processes
t-designs of minimal order
QMC-designs
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Determinantal point process in S
2

Figure: 10000 sampled points from an i.i.d. process and a DPP, resp.
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Open questions

Find relations with other measures of uniformity:
discrepancy, error of integration, energy. . .

Find explicit deterministic constructions for hyperuniform
point sets for any N .
Find explicit deterministic constructions for point sets
achieving the best possible discrepancy bound (or even a
bound better than N−

1
2 )
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